Nijenhuis geometry III: gl-regular Nijenhuis operators

نویسندگان

چکیده

We study Nijenhuis operators, that is, (1,1)-tensors with vanishing torsion under the additional assumption they are gl-regular, i.e., every eigenvalue has geometric multiplicity one. prove existence of a coordinate system in which operator takes first or second companion form, and give local describtion such operators. apply this description to singular points. In particular, we obtain their normal forms dimension two discover topological restrictions for gl-regular operators on closed surfaces. This paper is an important step research programme suggested arXiv:1903.04603 arXiv:1903.06411.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Nijenhuis operators and dendriform trialgebras

We construct Nijenhuis operators from particular bialgebras called dendriform-Nijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, a kind of Baxter-Rota operators, and are therefore closely related to dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras, made out of nine operations and presentin...

متن کامل

Algebraic Nijenhuis operators and Kronecker Poisson pencils

This paper is devoted to a method of constructing completely integrable systems based on the micro-local theory of bihamiltonian structures [GZ89, GZ91, Bol91, GZ93, GZ00, Pan00, Zak01]. The main tool are the so-called microKronecker bihamiltonian structures [Zak01], which will be called Kronecker in this paper for short (in [GZ00] the term Kronecker was used for the micro-Kronecker structures ...

متن کامل

A New Look at the Schouten-Nijenhuis, Frölicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

In this paper we re-express the Schouten-Nijenhuis, the Frölicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.

متن کامل

Cosymmetries and Nijenhuis recursion operators for difference equations

In this paper we discuss the concept of cosymmetries and co–recursion operators for difference equations and present a co–recursion operator for the Viallet equation. We also discover a new type of factorisation for the recursion operators of difference equations. This factorisation enables us to give an elegant proof that the recursion operator given in arXiv:1004.5346 is indeed a recursion op...

متن کامل

Construction of Nijenhuis Operators and Dendriform Trialgebras 1

We construct Nijenhuis operators from particular bialgebras called dendriformNijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, kind of Baxter-Rota operators, and therefore closely related dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras made out with nine operations and presenting an exot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2023

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1416